What Is the Physical State of Strontium Chapter 6 Review
![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Strontium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | argent white metallic; with a stake yellow tint[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight A r, std(Sr) | 87.62(1) [2] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Strontium in the periodic table | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Diminutive number (Z) | 38 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Grouping | grouping 2 (alkali metal earth metals) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Menstruum | period 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Block | s-block | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Kr] 5s2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per crush | 2, eight, eighteen, 8, 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase atSTP | solid | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 1050 One thousand (777 °C, 1431 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Humid point | 1650 K (1377 °C, 2511 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (almostr.t.) | 2.64 g/cmthree | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
when liquid (atm.p.) | 2.375 g/cm3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Estrus of fusion | 7.43 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 141 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molar estrus capacity | 26.4 J/(mol·K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vapor pressure
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Diminutive backdrop | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | +1,[3] +two (a strongly basic oxide) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | Pauling scale: 0.95 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | empirical: 215 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 195±10 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Van der Waals radius | 249 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other backdrop | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Natural occurrence | primordial | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | face up-centered cubic (fcc) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | 22.v µm/(k⋅K) (at 25 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal electrical conductivity | 35.4 W/(m⋅Thousand) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | 132 nΩ⋅m (at 20 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | paramagnetic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tooth magnetic susceptibility | −92.0×10−6 cm3/mol (298 K)[iv] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young's modulus | xv.seven GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | six.03 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.28 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 1.5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS Number | 7440-24-half dozen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Naming | after the mineral strontianite, itself named after Strontian, Scotland | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Discovery | William Cruickshank (1787) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First isolation | Humphry Davy (1808) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main isotopes of strontium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silverish-white yellowish metallic element that is highly chemically reactive. The metallic forms a night oxide layer when it is exposed to air. Strontium has physical and chemic backdrop similar to those of its two vertical neighbors in the periodic table, calcium and barium. It occurs naturally mainly in the minerals celestine and strontianite, and is generally mined from these.
Both strontium and strontianite are named after Strontian, a village in Scotland near which the mineral was discovered in 1790 by Adair Crawford and William Cruickshank; it was identified as a new element the next year from its cherry-red-red flame test color. Strontium was starting time isolated as a metallic in 1808 by Humphry Davy using the and then newly discovered process of electrolysis. During the 19th century, strontium was more often than not used in the production of sugar from saccharide beets (meet strontian procedure). At the peak of production of television receiver cathode ray tubes, as much as 75% of strontium consumption in the United states was used for the faceplate glass.[5] With the replacement of cathode ray tubes with other display methods, consumption of strontium has dramatically declined.[5]
While natural strontium (which is mostly the isotope strontium-88) is stable, the synthetic strontium-90 is radioactive and is 1 of the most dangerous components of nuclear fallout, as strontium is captivated by the body in a similar manner to calcium. Natural stable strontium, on the other mitt, is not hazardous to health.
Characteristics [edit]
Strontium is a divalent silverish metallic with a pale yellow tint whose properties are mostly intermediate between and like to those of its group neighbors calcium and barium.[6] Information technology is softer than calcium and harder than barium. Its melting (777 °C) and boiling (1377 °C) points are lower than those of calcium (842 °C and 1484 °C respectively); barium continues this downward trend in the melting signal (727 °C), but not in the boiling point (1900 °C). The density of strontium (ii.64 g/cm3) is similarly intermediate between those of calcium (1.54 g/cmiii) and barium (three.594 g/cmiii).[seven] Three allotropes of metallic strontium exist, with transition points at 235 and 540 °C.[8]
The standard electrode potential for the Srii+/Sr couple is −two.89 V, approximately midway between those of the Ca2+/Ca (−2.84 V) and Ba2+/Ba (−ii.92 V) couples, and close to those of the neighboring alkali metals.[nine] Strontium is intermediate between calcium and barium in its reactivity toward water, with which it reacts on contact to produce strontium hydroxide and hydrogen gas. Strontium metal burns in air to produce both strontium oxide and strontium nitride, merely since it does not react with nitrogen beneath 380 °C, at room temperature, it forms just the oxide spontaneously.[vii] Besides the simple oxide SrO, the peroxide SrO2 can exist made by straight oxidation of strontium metallic under a high pressure of oxygen, and there is some evidence for a yellow superoxide Sr(O2)2.[10] Strontium hydroxide, Sr(OH)2, is a stiff base, though it is not every bit strong as the hydroxides of barium or the brine metals.[11] All four dihalides of strontium are known.[12]
Due to the big size of the heavy s-block elements, including strontium, a vast range of coordination numbers is known, from 2, 3, or 4 all the style to 22 or 24 in SrCdeleven and SrZn13. The Sr2+ ion is quite big, so that high coordination numbers are the dominion.[thirteen] The large size of strontium and barium plays a meaning part in stabilising strontium complexes with polydentate macrocyclic ligands such equally crown ethers: for instance, while 18-crown-half-dozen forms relatively weak complexes with calcium and the alkali metals, its strontium and barium complexes are much stronger.[14]
Organostrontium compounds contain 1 or more strontium–carbon bonds. They have been reported every bit intermediates in Barbier-type reactions.[15] [16] [17] Although strontium is in the same group equally magnesium, and organomagnesium compounds are very usually used throughout chemistry, organostrontium compounds are not similarly widespread considering they are more difficult to brand and more reactive. Organostrontium compounds tend to be more similar to organoeuropium or organosamarium compounds due to the similar ionic radii of these elements (Sr2+ 118 pm; Eutwo+ 117 pm; Sm2+ 122 pm). Most of these compounds can simply be prepared at depression temperatures; bulky ligands tend to favor stability. For example, strontium dicyclopentadienyl, Sr(CfiveH5)2, must exist fabricated past directly reacting strontium metal with mercurocene or cyclopentadiene itself; replacing the CvH5 ligand with the bulkier C5(CH3)5 ligand on the other hand increases the compound's solubility, volatility, and kinetic stability.[18]
Because of its extreme reactivity with oxygen and water, strontium occurs naturally only in compounds with other elements, such as in the minerals strontianite and celestine. It is kept under a liquid hydrocarbon such as mineral oil or kerosene to preclude oxidation; freshly exposed strontium metal apace turns a yellow color with the formation of the oxide. Finely powdered strontium metal is pyrophoric, meaning that it will ignite spontaneously in air at room temperature. Volatile strontium salts impart a bright cherry-red color to flames, and these salts are used in pyrotechnics and in the product of flares.[vii] Like calcium and barium, as well as the alkali metals and the divalent lanthanides europium and ytterbium, strontium metal dissolves straight in liquid ammonia to give a dark bluish solution of solvated electrons.[6]
Isotopes [edit]
Natural strontium is a mixture of 4 stable isotopes: 84Sr, 86Sr, 87Sr, and 88Sr.[7] Their affluence increases with increasing mass number and the heaviest, 88Sr, makes upwardly about 82.6% of all natural strontium, though the abundance varies due to the product of radiogenic 87Sr equally the girl of long-lived beta-decomposable 87Rb.[19] This is the basis of rubidium–strontium dating. Of the unstable isotopes, the primary disuse manner of the isotopes lighter than 85Sr is electron capture or positron emission to isotopes of rubidium, and that of the isotopes heavier than 88Sr is electron emission to isotopes of yttrium. Of special annotation are 89Sr and 90Sr. The sometime has a one-half-life of l.6 days and is used to treat os cancer due to strontium's chemic similarity and hence ability to replace calcium.[20] [21] While ninetySr (half-life 28.xc years) has been used similarly, it is likewise an isotope of concern in fallout from nuclear weapons and nuclear accidents due to its product as a fission product. Its presence in bones tin cause bone cancer, cancer of nearby tissues, and leukemia.[22] The 1986 Chernobyl nuclear accident contaminated virtually 30,000 km2 with greater than x kBq/mii with 90Sr, which accounts for about 5% of the xcSr which was in the reactor core.[23]
History [edit]
Strontium is named later on the Scottish village of Strontian (Gaelic Sròn an t-Sìthein), where it was discovered in the ores of the lead mines.[24]
In 1790, Adair Crawford, a dr. engaged in the preparation of barium, and his colleague William Cruickshank, recognised that the Strontian ores exhibited properties that differed from those in other "heavy spars" sources.[25] This allowed Crawford to conclude on page 355 "... it is probable indeed, that the scotch mineral is a new species of earth which has not hitherto been sufficiently examined." The doctor and mineral collector Friedrich Gabriel Sulzer analysed together with Johann Friedrich Blumenbach the mineral from Strontian and named it strontianite. He also came to the conclusion that it was distinct from the witherite and contained a new earth (neue Grunderde).[26] In 1793 Thomas Charles Hope, a professor of chemistry at the University of Glasgow studied the mineral[27] [28] and proposed the proper name strontites.[29] [30] [31] He confirmed the earlier piece of work of Crawford and recounted: "... Because information technology a peculiar earth I idea it necessary to give it an name. I have chosen it Strontites, from the place information technology was institute; a manner of derivation in my stance, fully every bit proper as any quality information technology may possess, which is the present fashion." The element was eventually isolated by Sir Humphry Davy in 1808 past the electrolysis of a mixture containing strontium chloride and mercuric oxide, and announced past him in a lecture to the Royal Club on 30 June 1808.[32] In keeping with the naming of the other alkaline earths, he inverse the name to strontium.[33] [34] [35] [36] [37]
The start large-scale application of strontium was in the production of carbohydrate from sugar beet. Although a crystallisation process using strontium hydroxide was patented by Augustin-Pierre Dubrunfaut in 1849[38] the big scale introduction came with the improvement of the process in the early on 1870s. The German sugar industry used the procedure well into the 20th century. Before Earth War I the beet sugar manufacture used 100,000 to 150,000 tons of strontium hydroxide for this process per year.[39] The strontium hydroxide was recycled in the procedure, merely the need to substitute losses during production was loftier enough to create a significant demand initiating mining of strontianite in the Münsterland. The mining of strontianite in Germany ended when mining of the celestine deposits in Gloucestershire started.[xl] These mines supplied virtually of the earth strontium supply from 1884 to 1941. Although the celestine deposits in the Granada bowl were known for some time the big scale mining did not kickoff before the 1950s.[41]
During atmospheric nuclear weapons testing, it was observed that strontium-ninety is one of the nuclear fission products with a relatively high yield. The similarity to calcium and the gamble that the strontium-90 might become enriched in bones made research on the metabolism of strontium an important topic.[42] [43]
Occurrence [edit]
The mineral celestine (SrSO4)
Strontium usually occurs in nature, being the 15th well-nigh abundant element on Globe (its heavier congener barium existence the 14th), estimated to average approximately 360 parts per 1000000 in the Earth's crust[44] and is found chiefly equally the sulfate mineral celestine (SrSO4) and the carbonate strontianite (SrCOthree). Of the ii, celestine occurs much more frequently in deposits of sufficient size for mining. Considering strontium is used nigh often in the carbonate form, strontianite would be the more than useful of the two common minerals, just few deposits take been discovered that are suitable for development.[45] Because of the fashion information technology reacts with air and h2o, strontium simply exists in nature when combined to class minerals. Naturally occurring strontium is stable, but its synthetic isotope Sr-xc is only produced past nuclear fallout.
In groundwater strontium behaves chemically much like calcium. At intermediate to acidic pH Sr2+ is the dominant strontium species. In the presence of calcium ions, strontium normally forms coprecipitates with calcium minerals such equally calcite and anhydrite at an increased pH. At intermediate to acidic pH, dissolved strontium is spring to soil particles by cation exchange.[46]
The mean strontium content of ocean water is 8 mg/l.[47] [48] At a concentration between 82 and 90 μmol/fifty of strontium, the concentration is considerably lower than the calcium concentration, which is normally between 9.half dozen and 11.6 mmol/l.[49] [50] It is nevertheless much higher than that of barium, 13 μg/fifty.[7]
Production [edit]
Strontium producers in 2014[51]
The three major producers of strontium every bit celestine as of 2015 are Mainland china (150,000 t), Spain (ninety,000 t), and Mexico (70,000 t); Argentina (ten,000 t) and Kingdom of morocco (2,500 t) are smaller producers. Although strontium deposits occur widely in the United states, they take non been mined since 1959.[51]
A large proportion of mined celestine (SrSO4) is converted to the carbonate by ii processes. Either the celestine is straight leached with sodium carbonate solution or the celestine is roasted with coal to class the sulfide. The second stage produces a dark-coloured material containing mostly strontium sulfide. This so-called "black ash" is dissolved in water and filtered. Strontium carbonate is precipitated from the strontium sulfide solution by introduction of carbon dioxide.[52] The sulfate is reduced to the sulfide by the carbothermic reduction:
- SrSO4 + two C → SrS + 2 CO2
Nigh 300,000 tons are processed in this way annually.[53]
The metal is produced commercially by reducing strontium oxide with aluminium. The strontium is distilled from the mixture.[53] Strontium metal tin also exist prepared on a small calibration by electrolysis of a solution of strontium chloride in molten potassium chloride:[9]
- Sr2+ + ii
e −
→ Sr - 2 Cl− → Cltwo + two
e −
Applications [edit]
Cathode ray tube (CRT) display made from strontium and barium oxide-containing drinking glass. This application used to swallow most of the world's production of strontium.
Consuming 75% of product, the principal use for strontium was in glass for colour telly cathode ray tubes,[53] where it prevented X-ray emission.[54] [55] This application for strontium has been failing because CRTs are being replaced by other display methods. This decline has a meaning influence on the mining and refining of strontium.[45] All parts of the CRT must absorb X-rays. In the cervix and the funnel of the tube, lead glass is used for this purpose, but this blazon of glass shows a browning effect due to the interaction of the X-rays with the glass. Therefore, the front panel is made from a different glass mixture with strontium and barium to absorb the 10-rays. The average values for the drinking glass mixture adamant for a recycling study in 2005 is 8.5% strontium oxide and x% barium oxide.[56]
Because strontium is and so like to calcium, it is incorporated in the bone. All 4 stable isotopes are incorporated, in roughly the same proportions they are constitute in nature. However, the actual distribution of the isotopes tends to vary greatly from one geographical location to another. Thus, analyzing the bone of an individual can help determine the region information technology came from.[57] [58] This arroyo helps to identify the ancient migration patterns and the origin of commingled homo remains in battlefield burial sites.[59]
87Sr/86Sr ratios are commonly used to make up one's mind the probable provenance areas of sediment in natural systems, particularly in marine and fluvial environments. Dasch (1969) showed that surface sediments of Atlantic displayed 87Sr/86Sr ratios that could exist regarded as bulk averages of the 87Sr/86Sr ratios of geological terrains from side by side landmasses.[60] A good example of a fluvial-marine system to which Sr isotope provenance studies have been successfully employed is the River Nile-Mediterranean system.[61] Due to the differing ages of the rocks that institute the majority of the Bluish and White Nile, catchment areas of the changing provenance of sediment reaching the River Nile Delta and Eastward Mediterranean Sea can exist discerned through strontium isotopic studies. Such changes are climatically controlled in the Belatedly Fourth.[61]
More recently, 87Sr/86Sr ratios have as well been used to determine the source of aboriginal archaeological materials such as timbers and corn in Chaco Coulee, New Mexico.[62] [63] 87Sr/86Sr ratios in teeth may as well be used to track animal migrations.[64] [65]
Strontium aluminate is oftentimes used in glow in the dark toys, as it is chemically and biologically inert.[ citation needed ]
Strontium salts are added to fireworks in order to create reddish colors
Strontium carbonate and other strontium salts are added to fireworks to give a deep cherry colour.[66] This same effect identifies strontium cations in the flame test. Fireworks consume most v% of the world's production.[53] Strontium carbonate is used in the manufacturing of hard ferrite magnets.[67] [68]
Strontium chloride is sometimes used in toothpastes for sensitive teeth. 1 popular brand includes x% full strontium chloride hexahydrate by weight.[69] Small-scale amounts are used in the refining of zinc to remove small amounts of lead impurities.[7] The metal itself has a limited use every bit a getter, to remove unwanted gases in vacuums by reacting with them, although barium may also be used for this purpose.[ix]
The ultra-narrow optical transition between the [Kr]5s2 1South0 electronic basis country and the metastable [Kr]5s5p 3P0 excited state of 87Sr is i of the leading candidates for the future re-definition of the 2d in terms of an optical transition as opposed to the current definition derived from a microwave transition between different hyperfine ground states of 133Cs.[70] Current optical diminutive clocks operating on this transition already surpass the precision and accuracy of the current definition of the 2d.
Radioactive strontium [edit]
89Sr is the active ingredient in Metastron,[71] a radiopharmaceutical used for bone hurting secondary to metastatic os cancer. The strontium is processed like calcium past the body, preferentially incorporating information technology into bone at sites of increased osteogenesis. This localization focuses the radiation exposure on the cancerous lesion.[21]
RTGs from Soviet-era lighthouses
ninetySr has been used as a power source for radioisotope thermoelectric generators (RTGs). 90Sr produces approximately 0.93 watts of heat per gram (information technology is lower for the course of 90Sr used in RTGs, which is strontium fluoride).[72] Notwithstanding, 90Sr has one 3rd the lifetime and a lower density than 238Pu, another RTG fuel. The main reward of 90Sr is that it is cheaper than 238Pu and is found in nuclear waste. The Soviet Matrimony deployed nearly 1000 of these RTGs on its northern coast as a power source for lighthouses and meteorology stations.[73] [74]
Biological role [edit]
Hazards | |
---|---|
GHS labelling: | |
Pictograms | ![]() ![]() |
Indicate word | Danger |
Take a chance statements | H261, H315 |
Precautionary statements | P223, P231+P232, P370+P378, P422 [75] |
NFPA 704 (fire diamond) | two 0 2 |
Acantharea, a relatively large grouping of marine radiolarian protozoa, produce intricate mineral skeletons composed of strontium sulfate.[76] In biological systems, calcium is substituted to a small extent by strontium.[77] In the human body, well-nigh of the absorbed strontium is deposited in the bones. The ratio of strontium to calcium in man bones is between one:1000 and 1:2000, roughly in the same range as in the claret serum.[78]
Effect on the human trunk [edit]
The man body absorbs strontium as if it were its lighter congener calcium. Because the elements are chemically very like, stable strontium isotopes exercise not pose a pregnant wellness threat. The average human has an intake of almost two milligrams of strontium a day.[79] In adults, strontium consumed tends to adhere only to the surface of bones, but in children, strontium can supervene upon calcium in the mineral of the growing bones and thus lead to bone growth problems.[80]
The biological half-life of strontium in humans has variously been reported as from 14 to 600 days,[81] [82] one,000 days,[83] xviii years,[84] 30 years[85] and, at an upper limit, 49 years.[86] The wide-ranging published biological one-half-life figures are explained by strontium's complex metabolism within the body. Nevertheless, by averaging all excretion paths, the overall biological half-life is estimated to be almost eighteen years.[87] The emptying charge per unit of strontium is strongly afflicted past age and sex, due to differences in bone metabolism.[88]
The drug strontium ranelate aids os growth, increases bone density, and lessens the incidence of vertebral, peripheral, and hip fractures.[89] [90] Even so, strontium ranelate also increases the risk of venous thromboembolism, pulmonary embolism, and serious cardiovascular disorders, including myocardial infarction. Its apply is therefore now restricted.[91] Its beneficial effects are likewise questionable, since the increased bone density is partially caused by the increased density of strontium over the calcium which information technology replaces. Strontium likewise bioaccumulates in the body.[92] Despite restrictions on strontium ranelate, strontium is still independent in some supplements.[93] [94] There is not much scientific evidence on risks of strontium chloride when taken by rima oris. Those with a personal or family history of blood clotting disorders are advised to avoid strontium.[93] [94]
Strontium has been shown to inhibit sensory irritation when applied topically to the skin.[95] [96] Topically practical, strontium has been shown to accelerate the recovery rate of the epidermal permeability barrier (skin barrier).[97]
Nuclear waste [edit]
Strontium-90 is a radioactive fission production produced by nuclear reactors used in nuclear ability. It is a major component of loftier level radioactive waste and spent nuclear fuel. Its 29-year half life is short plenty that its disuse heat has been used to ability arctic lighthouses, but long enough that it tin accept hundreds of years to decay to rubber levels. Exposure from contaminated water and food may increment the run a risk of leukemia, bone cancer[98] and primary hyperparathyroidism.[99]
Remediation [edit]
Algae has shown selectivity for strontium in studies, where almost plants used in bioremediation have not shown selectivity betwixt calcium and strontium, often condign saturated with calcium, which is greater in quantity and also present in nuclear waste product.[98]
Researchers accept looked at the bioaccumulation of strontium by Scenedesmus spinosus (algae) in simulated wastewater. The study claims a highly selective biosorption capacity for strontium of S. spinosus, suggesting that it may be appropriate for use of nuclear wastewater.[100]
A report of the pond alga Closterium moniliferum using non-radioactive strontium establish that varying the ratio of barium to strontium in water improved strontium selectivity.[98]
See also [edit]
References [edit]
- ^ Greenwood and Earnshaw, p. 112
- ^ "Standard Atomic Weights: Strontium". CIAAW. 1969.
- ^ Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). "High-Resolution Infrared Emission Spectrum of Strontium Monofluoride" (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:x.1006/jmsp.1996.0019.
- ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemic Rubber Company Publishing. pp. E110. ISBN0-8493-0464-4.
- ^ a b "Mineral Resource of the Calendar month: Strontium". U.S. Geological Survey. 8 December 2014. Retrieved xvi August 2015.
- ^ a b Greenwood and Earnshaw, pp. 112–13
- ^ a b c d e f C. R. Hammond The elements (pp. iv–35) in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Printing. ISBN0-8493-0486-5.
- ^ Ropp, Richard C. (31 December 2012). Encyclopedia of the Alkaline Earth Compounds. p. xvi. ISBN978-0-444-59553-9.
- ^ a b c Greenwood and Earnshaw, p. 111
- ^ Greenwood and Earnshaw, p. 119
- ^ Greenwood and Earnshaw, p. 121
- ^ Greenwood and Earnshaw, p. 117
- ^ Greenwood and Earnshaw, p. 115
- ^ Greenwood and Earnshaw, p. 124
- ^ Miyoshi, N.; Kamiura, K.; Oka, H.; Kita, A.; Kuwata, R.; Ikehara, D.; Wada, Yard. (2004). "The Barbier-Type Alkylation of Aldehydes with Alkyl Halides in the Presence of Metallic Strontium". Bulletin of the Chemical Society of Japan. 77 (2): 341. doi:10.1246/bcsj.77.341.
- ^ Miyoshi, N.; Ikehara, D.; Kohno, T.; Matsui, A.; Wada, M. (2005). "The Chemistry of Alkylstrontium Halide Analogues: Barbier-type Alkylation of Imines with Alkyl Halides". Chemical science Letters. 34 (6): 760. doi:10.1246/cl.2005.760.
- ^ Miyoshi, Northward.; Matsuo, T.; Wada, Yard. (2005). "The Chemistry of Alkylstrontium Halide Analogues, Part 2: Barbier-Type Dialkylation of Esters with Alkyl Halides". European Journal of Organic Chemistry. 2005 (twenty): 4253. doi:10.1002/ejoc.200500484.
- ^ Greenwood and Earnshaw, pp. 136–37
- ^ Greenwood and Earnshaw, p. nineteen
- ^ Halperin, Edward C.; Perez, Carlos A.; Brady, Luther W. (2008). Perez and Brady's principles and do of radiations oncology. Lippincott Williams & Wilkins. pp. 1997–. ISBN978-0-7817-6369-one . Retrieved 19 July 2011.
- ^ a b Bauman, Glenn; Charette, Manya; Reid, Robert; Sathya, Jinka (2005). "Radiopharmaceuticals for the palliation of painful bone metastases – a systematic review". Radiotherapy and Oncology. 75 (3): 258.E1–258.E13. doi:10.1016/j.radonc.2005.03.003. PMID 16299924.
- ^ "Strontium | Radiation Protection | US EPA". EPA. 24 April 2012. Retrieved 18 June 2012.
- ^ "Chernobyl: Cess of Radiological and Health Touch, 2002 update; Affiliate I – The site and blow sequence" (PDF). OECD-NEA. 2002. Retrieved iii June 2015.
- ^ Murray, W. H. (1977). The Companion Guide to the West Highlands of Scotland . London: Collins. ISBN978-0-00-211135-5.
- ^ Crawford, Adair (1790). "On the medicinal properties of the muriated barytes". Medical Communications. 2: 301–59.
- ^ Sulzer, Friedrich Gabriel; Blumenbach, Johann Friedrich (1791). "Über den Strontianit, ein Schottisches Foßil, das ebenfalls eine neue Grunderde zu enthalten scheint". Bergmännisches Journal: 433–36.
- ^ "Thomas Charles Promise, MD, FRSE, FRS (1766-1844) - School of Chemistry". www.chem.ed.ac.u.k..
- ^ Doyle, W.P. "Thomas Charles Promise, MD, FRSE, FRS (1766–1844)". The University of Edinburgh. Archived from the original on 2 June 2013.
- ^ Although Thomas C. Hope had investigated strontium ores since 1791, his research was published in: Promise, Thomas Charles (1798). "Account of a mineral from Strontian and of a particular species of earth which it contains". Transactions of the Majestic Society of Edinburgh. 4 (two): 3–39. doi:10.1017/S0080456800030726.
- ^ Murray, T. (1993). "Unproblematic Scots: The Discovery of Strontium". Scottish Medical Journal. 38 (6): 188–89. doi:10.1177/003693309303800611. PMID 8146640. S2CID 20396691.
- ^ Hope, Thomas Charles (1794). "Account of a mineral from Strontian and of a particular species of earth which information technology contains". Transactions of the Royal Lodge of Edinburgh. iii (2): 141–49. doi:x.1017/S0080456800020275.
- ^ Davy, H. (1808). "Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkali metal earths, and on the amalgam procured from ammonia". Philosophical Transactions of the Majestic Society of London. 98: 333–70. Bibcode:1808RSPT...98..333D. doi:10.1098/rstl.1808.0023.
- ^ Taylor, Stuart (nineteen June 2008). "Strontian gets set for ceremony". Lochaber News. Archived from the original on xiii Jan 2009.
{{cite spider web}}
: CS1 maint: bot: original URL status unknown (link) - ^ Weeks, Mary Elvira (1932). "The discovery of the elements: 10. The alkaline earth metals and magnesium and cadmium". Journal of Chemic Didactics. ix (vi): 1046–57. Bibcode:1932JChEd...ix.1046W. doi:10.1021/ed009p1046.
- ^ Partington, J. R. (1942). "The early history of strontium". Annals of Science. 5 (2): 157. doi:x.1080/00033794200201411.
- ^ Partington, J. R. (1951). "The early history of strontium. Part II". Annals of Science. 7: 95. doi:10.1080/00033795100202211.
- ^ Many other early on investigators examined strontium ore, amongst them: (ane) Martin Heinrich Klaproth, "Chemische Versuche über die Strontianerde" (Chemical experiments on strontian ore), Crell'south Annalen (September 1793) no. two, pp. 189–202 ; and "Nachtrag zu den Versuchen über die Strontianerde" (Addition to the Experiments on Strontian Ore), Crell's Annalen (February 1794) no. i, p. 99 ; also (2) Kirwan, Richard (1794). "Experiments on a new world found most Stronthian in Scotland". The Transactions of the Royal Irish Academy. 5: 243–56.
- ^ Fachgruppe Geschichte Der Chemie, Gesellschaft Deutscher Chemiker (2005). Metalle in der Elektrochemie. pp. 158–62.
- ^ Heriot, T. H. P (2008). "strontium saccharate process". Industry of Sugar from the Cane and Beet. ISBN978-i-4437-2504-0.
- ^ Börnchen, Martin. "Der Strontianitbergbau im Münsterland". Archived from the original on 11 December 2014. Retrieved 9 November 2010.
- ^ Martin, Josèm; Ortega-Huertas, Miguel; Torres-Ruiz, Jose (1984). "Genesis and development of strontium deposits of the granada basin (Southeastern Espana): Prove of diagenetic replacement of a stromatolite belt". Sedimentary Geology. 39 (3–iv): 281. Bibcode:1984SedG...39..281M. doi:x.1016/0037-0738(84)90055-1.
- ^ "Chain Fission Yields". iaea.org.
- ^ Nordin, B. Due east. (1968). "Strontium Comes of Age". British Medical Periodical. 1 (5591): 566. doi:10.1136/bmj.1.5591.566. PMC1985251.
- ^ Turekian, Thousand. Chiliad.; Wedepohl, Yard. H. (1961). "Distribution of the elements in some major units of the Earth's crust". Geological Gild of America Bulletin. 72 (2): 175–92. Bibcode:1961GSAB...72..175T. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
- ^ a b Ober, Joyce A. "Mineral Commodity Summaries 2010: Strontium" (PDF). The states Geological Survey. Retrieved xiv May 2010.
- ^ Heuel-Fabianek, B. (2014). "Partition Coefficients (Kd) for the Modelling of Transport Processes of Radionuclides in Groundwater" (PDF). Berichte des Forschungszentrums Jülich. 4375. ISSN 0944-2952.
- ^ Stringfield, V. T. (1966). "Strontium". Artesian water in Tertiary limestone in the southeastern States. Geological Survey Professional Paper. United States Government Printing Part. pp. 138–39.
- ^ Angino, Ernest East.; Billings, Gale Thousand.; Andersen, Neil (1966). "Observed variations in the strontium concentration of sea water". Chemical Geology. 1: 145. Bibcode:1966ChGeo...ane..145A. doi:10.1016/0009-2541(66)90013-ane.
- ^ Lord's day, Y.; Dominicus, M.; Lee, T.; Nie, B. (2005). "Influence of seawater Sr content on coral Sr/Ca and Sr thermometry". Coral Reefs. 24: 23. doi:10.1007/s00338-004-0467-x. S2CID 31543482.
- ^ Kogel, Jessica Elzea; Trivedi, Nikhil C.; Barker, James Chiliad. (5 March 2006). Industrial Minerals & Rocks: Commodities, Markets, and Uses. ISBN978-0-87335-233-8.
- ^ a b Ober, Joyce A. "Mineral Commodity Summaries 2015: Strontium" (PDF). U.s.a. Geological Survey. Retrieved 26 March 2016.
- ^ Kemal, Mevlüt; Arslan, Five.; Akar, A.; Canbazoglu, M. (1996). Production of SrCO3 by black ash process: Determination of reductive roasting parameters. p. 401. ISBN978-90-5410-829-0.
- ^ a b c d MacMillan, J. Paul; Park, Jai Won; Gerstenberg, Rolf; Wagner, Heinz; Köhler, Karl and Wallbrecht, Peter (2002) "Strontium and Strontium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a25_321.
- ^ "Cathode Ray Tube Glass-To-Glass Recycling" (PDF). ICF Incorporated, USEP Agency. Archived from the original (PDF) on nineteen December 2008. Retrieved 7 January 2012.
- ^ Ober, Joyce A.; Polyak, Désirée E. "Mineral Yearbook 2007: Strontium" (PDF). U.s. Geological Survey. Retrieved 14 October 2008.
- ^ Méar, F.; Yot, P.; Cambon, M.; Ribes, M. (2006). "The label of waste cathode-ray tube glass". Waste Management. 26 (12): 1468–76. doi:x.1016/j.wasman.2005.xi.017. PMID 16427267.
- ^ Price, T. Douglas; Schoeninger, Margaret J.; Armelagos, George J. (1985). "Bone chemistry and past beliefs: an overview". Journal of Human Evolution. 14 (5): 419–47. doi:x.1016/S0047-2484(85)80022-1.
- ^ Steadman, Luville T.; Brudevold, Finn; Smith, Frank A. (1958). "Distribution of strontium in teeth from different geographic areas". The Periodical of the American Dental Association. 57 (three): 340–44. doi:10.14219/jada.annal.1958.0161. PMID 13575071.
- ^ Schweissing, Matthew Mike; Grupe, Gisela (2003). "Stable strontium isotopes in human teeth and bone: a key to migration events of the late Roman period in Bavaria". Journal of Archaeological Scientific discipline. 30 (11): 1373–83. doi:10.1016/S0305-4403(03)00025-6.
- ^ Dasch, J. (1969). "Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks". Geochimica et Cosmochimica Acta. 33 (12): 1521–52. Bibcode:1969GeCoA..33.1521D. doi:x.1016/0016-7037(69)90153-7.
- ^ a b Krom, M. D.; Cliff, R.; Eijsink, L. 1000.; Herut, B.; Chester, R. (1999). "The characterisation of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes". Marine Geology. 155 (3–4): 319–30. Bibcode:1999MGeol.155..319K. doi:10.1016/S0025-3227(98)00130-iii.
- ^ Benson, L.; Cordell, L.; Vincent, K.; Taylor, H.; Stein, J.; Farmer, G. & Kiyoto, F. (2003). "Ancient maize from Chacoan smashing houses: where was information technology grown?". Proceedings of the National University of Sciences. 100 (22): 13111–xv. Bibcode:2003PNAS..10013111B. doi:10.1073/pnas.2135068100. PMC240753. PMID 14563925.
- ^ English NB; Betancourt JL; Dean JS; Quade J. (October 2001). "Strontium isotopes reveal afar sources of architectural timber in Chaco Coulee, New Mexico". Proc Natl Acad Sci The states. 98 (21): 11891–96. Bibcode:2001PNAS...9811891E. doi:10.1073/pnas.211305498. PMC59738. PMID 11572943.
- ^ Barnett-Johnson, Rachel; Grimes, Churchill B.; Royer, Chantell F.; Donohoe, Christopher J. (2007). "Identifying the contribution of wild and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the ocean fishery using otolith microstructure as natural tags". Canadian Journal of Fisheries and Aquatic Sciences. 64 (12): 1683–92. doi:ten.1139/F07-129.
- ^ Porder, S.; Paytan, A. & Due east.A. Hadly (2003). "Mapping the origin of faunal assemblages using strontium isotopes". Paleobiology. 29 (ii): 197–204. doi:10.1666/0094-8373(2003)029<0197:MTOOFA>2.0.CO;ii.
- ^ "Chemistry of Firework Colors – How Fireworks Are Colored". Chemical science.virtually.com. 10 April 2012. Retrieved 14 April 2012.
- ^ "Ferrite Permanent Magnets". Arnold Magnetic Technologies. Archived from the original on 14 May 2012. Retrieved 18 January 2014.
- ^ "Barium Carbonate". Chemical Products Corporation. Archived from the original on 6 Oct 2014. Retrieved xviii January 2014.
- ^ Ghom (one December 2005). Textbook of Oral Medicine. p. 885. ISBN978-81-8061-431-6.
- ^ CartlidgeMar. 1, Edwin; 2018; Pm, 12:00 (28 February 2018). "With meliorate atomic clocks, scientists prepare to redefine the second". Scientific discipline | AAAS . Retrieved ten February 2019.
{{cite web}}
: CS1 maint: numeric names: authors listing (link) - ^ "FDA ANDA Generic Drug Approvals". Food and Drug Assistants.
- ^ "What are the fuels for radioisotope thermoelectric generators?". qrg.northwestern.edu.
- ^ Doyle, James (30 June 2008). Nuclear safeguards, security and nonproliferation: achieving security with technology and policy. p. 459. ISBN978-0-7506-8673-0.
- ^ O'Brien, R. C.; Ambrosi, R. Thousand.; Bannister, N. P.; Howe, S. D.; Atkinson, H. V. (2008). "Safe radioisotope thermoelectric generators and heat sources for space applications". Journal of Nuclear Materials. 377 (iii): 506–21. Bibcode:2008JNuM..377..506O. doi:ten.1016/j.jnucmat.2008.04.009.
- ^ "Strontium 343730". Sigma-Aldrich.
- ^ De Deckker, Patrick (2004). "On the celestite-secreting Acantharia and their consequence on seawater strontium to calcium ratios". Hydrobiologia. 517 (i–three): 1. doi:ten.1023/B:HYDR.0000027333.02017.50. S2CID 42526332.
- ^ Pors Nielsen, Southward. (2004). "The biological role of strontium". Bone. 35 (3): 583–88. doi:10.1016/j.bone.2004.04.026. PMID 15336592.
- ^ Cabrera, Walter Due east.; Schrooten, Iris; De Broe, Marc E.; d'Haese, Patrick C. (1999). "Strontium and Bone". Journal of Bone and Mineral Research. 14 (5): 661–68. doi:10.1359/jbmr.1999.14.5.661. PMID 10320513. S2CID 32627349.
- ^ Emsley, John (2011). Nature's building blocks: an A–Z guide to the elements. Oxford University Printing. p. 507. ISBN978-0-19-960563-vii.
- ^ Agency for Toxic Substances and Disease Registry (21 Jan 2015). "ATSDR – Public Health Statement: Strontium". cdc.gov. Agency for Toxic Substances and Disease Registry. Retrieved 17 Nov 2016.
- ^ Tiller, B. 50. (2001), "4.5 Fish and Wildlife Surveillance" (PDF), Hanford Site 2001 Environmental Report, DOE, archived from the original (PDF) on 11 May 2013, retrieved 14 January 2014
- ^ Driver, C. J. (1994), Ecotoxicity Literature Review of Selected Hanford Site Contaminants (PDF), DOE, doi:10.2172/10136486, OSTI 10136486, retrieved 14 January 2014
- ^ "Freshwater Ecology and Human Influence". Area Iv Envirothon. Archived from the original on 1 January 2014. Retrieved 14 January 2014.
- ^ "Radioisotopes That May Bear upon Nutrient Resources" (PDF). Epidemiology, Wellness and Social Services, Land of Alaska. Archived from the original on 21 August 2014. Retrieved 14 January 2014.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) - ^ "Homo Health Fact Sail: Strontium" (PDF). Argonne National Laboratory. Oct 2001. Archived from the original (PDF) on 24 January 2014. Retrieved xiv January 2014.
- ^ "Biological One-half-life". HyperPhysics. Retrieved xiv Jan 2014.
- ^ Glasstone, Samuel; Dolan, Philip J. (1977). "XII: Biological Effects" (PDF). The effects of Nuclear Weapons. p. 605. Retrieved xiv January 2014.
- ^ Shagina, N. B.; Bougrov, Northward. G.; Degteva, Thou. O.; Kozheurov, V. P.; Tolstykh, Due east. I. (2006). "An application of in vivo whole body counting technique for studying strontium metabolism and internal dose reconstruction for the Techa River population". Journal of Physics: Conference Series. 41 (i): 433–40. Bibcode:2006JPhCS..41..433S. doi:ten.1088/1742-6596/41/one/048. S2CID 32732782.
- ^ Meunier P. J.; Roux C.; Seeman E.; Ortolani, Southward.; Badurski, J. E.; Spector, T. D.; Cannata, J.; Balogh, A.; Lemmel, E. One thousand.; Pors-Nielsen, S.; Rizzoli, R.; Genant, H. M.; Reginster, J. Y. (January 2004). "The effects of strontium ranelate on the take chances of vertebral fracture in women with postmenopausal osteoporosis" (PDF). New England Journal of Medicine. 350 (5): 459–68. doi:10.1056/NEJMoa022436. PMID 14749454.
- ^ Reginster JY; Seeman E; De Vernejoul MC; Adami, South.; Compston, J.; Phenekos, C.; Devogelaer, J. P.; Diaz Curiel, M.; Sawicki, A.; Goemaere, S.; Sorensen, O. H.; Felsenberg, D.; Meunier, P. J. (May 2005). "Strontium ranelate reduces the chance of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) written report" (PDF). The Journal of Clinical Endocrinology & Metabolism. ninety (5): 2816–22. doi:10.1210/jc.2004-1774. PMID 15728210.
- ^ "Strontium ranelate: cardiovascular risk – restricted indication and new monitoring requirements". Medicines and Healthcare products Regulatory Agency, United kingdom of great britain and northern ireland. March 2014.
- ^ Cost, Charles T.; Langford, Joshua R.; Liporace, Frank A. (5 April 2012). "Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Nutrition". Open Orthop. J. 6: 143–49. doi:x.2174/1874325001206010143. PMC3330619. PMID 22523525.
- ^ a b "Strontium". WebMD . Retrieved 20 Nov 2017.
- ^ a b "Strontium for Osteoporosis". WebMD. Retrieved 20 November 2017.
- ^ Hahn, One thousand.S. (1999). "Strontium Is a Potent and Selective Inhibitor of Sensory Irritation" (PDF). Dermatologic Surgery. 25 (nine): 689–94. doi:x.1046/j.1524-4725.1999.99099.x. PMID 10491058. Archived from the original (PDF) on 31 May 2016.
- ^ Hahn, G.S. (2001). Anti-irritants for Sensory Irritation. Handbook of Corrective Science and Engineering science. p. 285. ISBN978-0-8247-0292-two.
- ^ Kim, Hyun Jeong; Kim, Min Jung; Jeong, Se Kyoo (2006). "The Effects of Strontium Ions on Epidermal Permeability Barrier". The Korean Dermatological Association, Korean Periodical of Dermatology. 44 (xi): 1309.
- ^ a b c Potera, Ballad (2011). "HAZARDOUS WASTE: Pond Algae Sequester Strontium-90". Environ Wellness Perspect. 119 (six): A244. doi:10.1289/ehp.119-a244. PMC3114833. PMID 21628117.
- ^ Boehm, BO; Rosinger, Southward; Belyi, D; Dietrich, JW (18 August 2011). "The parathyroid as a target for radiation impairment". The New England Journal of Medicine. 365 (seven): 676–eight. doi:x.1056/NEJMc1104982. PMID 21848480.
- ^ Liu, Mingxue; Dong, Faqin; Kang, Wu; Dominicus, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan (2014). "Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Weather condition: Adsorption and Bioaccumulation Processes and Models". Int J Environ Res Public Health. 11 (6): 6099–6118. doi:10.3390/ijerph110606099. PMC4078568. PMID 24919131.
Bibliography [edit]
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN978-0-08-037941-8.
External links [edit]
- WebElements.com – Strontium
- Strontium at The Periodic Table of Videos (Academy of Nottingham)
Source: https://en.wikipedia.org/wiki/Strontium
Post a Comment for "What Is the Physical State of Strontium Chapter 6 Review"